4 resultados para hydrogel, biomimetic, polyethylene glycol, native chemical ligation, controlled drug delivery

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles (Au NPs) with diameters ranging between 5-60 nm have been synthesised in water, and further stabilized with polyethylene glycol-based thiol polymers (mPEG-SH). Successful PEGylation of the Au NPs was confirmed by Dynamic Light scattering (DLS) and Zeta potential measurements. PEG coating of the Au NPs is the key of their colloidal stabilty, and its successful applications. Catalytic efficiency testing of the PEG-AuNPs were carried out on homocoupling of boronic acid. PEG-Au NPs with AuNps diameter < 30 nm were useful as catalyst in water. Finally, the PEG-Au NPs were also shown to be stable in biological fluid and not cytotoxic on B16.F10 cell line, making them attractive for further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles (Au NPs) with diameters ranging between 15 and 150 nm have been synthesised in water. 15 and 30 nm Au NPs were obtained by the Turkevich and Frens method using sodium citrate as both a reducing and stabilising agent at high temperature (Au NPs-citrate), while 60, 90 and 150 nm Au NPs were formed using hydroxylamine-o-sulfonic acid (HOS) as a reducing agent for HAuCl4 at room temperature. This new method using HOS is an extension of the approaches previously reported for producing Au NPs with mean diameters above 40 nm by direct reduction. Functionalised polyethylene glycol-based thiol polymers were used to stabilise the pre-synthesised Au NPs. The nanoparticles obtained were characterised using uv-visible spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). Further bioconjugation on 15, 30 and 90 nm PEGylated Au NPs were performed by grafting Bovine Serum Albumin, Transferrin and Apolipoprotein E (ApoE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor nanowires are pseudo 1-D structures where the magnitude of the semiconducting material is confined to a length of less than 100 nm in two dimensions. Semiconductor nanowires have a vast range of potential applications, including electronic (logic devices, diodes), photonic (laser, photodetector), biological (sensors, drug delivery), energy (batteries, solar cells, thermoelectric generators), and magnetic (spintronic, memory) devices. Semiconductor nanowires can be fabricated by a range of methods which can be categorised into one of two paradigms, bottom-up or top-down. Bottom-up processes can be defined as those where structures are assembled from their sub-components in an additive fashion. Top-down fabrication strategies use sculpting or etching to carve structures from a larger piece of material in a subtractive fashion. This seminar will detail a number of novel routes to fabricate semiconductor nanowires by both bottom-up and top-down paradigms. Firstly, a novel bottom-up route to fabricate Ge nanowires with controlled diameter distributions in the sub-20 nm regime will be described. This route details nanowire synthesis and diameter control in the absence of a foreign seed metal catalyst. Additionally a top-down route to nanowire array fabrication will be detailed outlining the importance of surface chemistry in high-resolution electron beam lithography (EBL) using hydrogen silsesquioxane (HSQ) on Ge and Bi2Se3 surfaces. Finally, a process will be described for the directed self-assembly of a diblock copolymer (PS-b-PDMS) using an EBL defined template. This section will also detail a route toward selective template sidewall wetting of either block in the PS-b-PDMS system, through tailored functionalisation of the template and substrate surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug delivery systems influence the various processes of release, absorption, distribution and elimination of drug. Conventional delivery methods administer drug through the mouth, the skin, transmucosal areas, inhalation or injection. However, one of the current challenges is the lack of effective and targeted oral drug administration. Development of sophisticated strategies, such as micro- and nanotechnology that can integrate the design and synthesis of drug delivery systems in a one-step, scalable process is fundamental in advancing the limitations of conventional processing techniques. Thus, the objective of this thesis is to evaluate novel microencapsulation technologies in the production of size-specific and target-specific drug-loaded particles. The first part of this thesis describes the utility of PDMS and silicon microfluidic flow focusing devices (MFFDs) to produce PLGA-based microparticles. The formation of uniform droplets was dependent on the surface of PDMS remaining hydrophilic. However, the durability of PDMS was limited to no more than 1 hour before wetting of the microchannel walls with dichloromethane and subsequent swelling occurred. Critically, silicon MFFDs revealed very good solvent compatibility and was sufficiently robust to withstand elevated fluid flow rates. Silicon MFFDs facilitated experiments to run over days with continuous use and re-use of the device with a narrower microparticle size distribution, relative to conventional production techniques. The second part of this thesis demonstrates an alternative microencapsulation technology, SmPill® minispheres, to target CsA delivery to the colon. Characterisation of CsA release in vitro and in vivo was performed. By modulating the ethylcellulose:pectin coating thickness, release of CsA in-vivo was more effectively controlled compared to current commercial CsA formulations and demonstrated a linear in-vitro in-vivo relationship. Coated minispheres were shown to limit CsA release in the upper small intestine and enhance localised CsA delivery to the colon.